Absence of Ca2+ current facilitation in skeletal muscle of transgenic mice lacking the type 1 ryanodine receptor.

نویسندگان

  • A Fleig
  • H Takeshima
  • R Penner
چکیده

1. Whole-cell patch-clamp recordings were used to study voltage-dependent facilitation of Ca2+ currents and excessive Ca2+ tail current in skeletal myoballs cultured from wild-type and transgenic mice expressing a null mutation of the ryanodine receptor (RyR) type 1 (dyspedic myoballs). 2. Ca2+ current density in dyspedic myoballs was reduced by about 60% compared with wild-type cells, with dihydropyridine-binding capacity largely retained. 3. Strong and long-lasting depolarizations (+80 mV and 600 ms), which normally produce excessive tail currents upon repolarization in control cells, failed to do so in dyspedic myoballs. 4. Dyspedic myoballs also failed to produce both Ca2+ current facilitation and the left shift of the current-voltage (I-V) curve induced by paired-pulse stimulation. 5. We propose that excessive tail currents and facilitation arise from silent Ca2+ channels acting as the voltage sensors in excitation-contraction coupling.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Embryonic lethality and abnormal cardiac myocytes in mice lacking ryanodine receptor type 2.

The ryanodine receptor type 2 (RyR-2) functions as a Ca2+-induced Ca2+ release (CICR) channel on intracellular Ca2+ stores and is distributed in most excitable cells with the exception of skeletal muscle cells. RyR-2 is abundantly expressed in cardiac muscle cells and is thought to mediate Ca2+ release triggered by Ca2+ influx through the voltage-gated Ca2+ channel to constitute the cardiac typ...

متن کامل

Gene profiling of embryonic skeletal muscle lacking type I ryanodine receptor Ca2+ release channel

In mature skeletal muscle, the intracellular Ca(2+) concentration rises dramatically upon membrane depolarization, constituting the link between excitation and contraction. This process requires Ca(2+) release from the sarcoplasmic reticulum via the type 1 ryanodine receptor (RYR1). However, RYR1's potential roles in muscle development remain obscure. We used an established RyR1- null mouse mod...

متن کامل

Facilitation of NMDAR-Independent LTP and Spatial Learning in Mutant Mice Lacking Ryanodine Receptor Type 3

To evaluate the role in synaptic plasticity of ryanodine receptor type 3 (RyR3), which is normally enriched in hippocampal area CA1, we generated RyR3-deficient mice. Mutant mice exhibited facilitated CA1 long-term potentiation (LTP) induced by short tetanus (100 Hz, 100 ms) stimulation. Unlike LTP in wild-type mice, this LTP was not blocked bythe NMDA receptor antagonist D-AP5 but was partiall...

متن کامل

A Transgenic Myogenic Cell Line Lacking Ryanodine Receptor Protein for Homologous Expression Studies: Reconstitution of Ry1R Protein and Function

CCS embryonic stem (ES) cells possessing two mutant alleles (ry1r-/ry1r-) for the skeletal muscle ryanodine receptor (RyR) have been produced and injected subcutaneously into severely compromised immunodeficient mice to produce teratocarcinomas in which Ry1R expression is absent. Several primary fibroblast cell lines were isolated and subcloned from one of these tumors that contain the knockout...

متن کامل

Calmodulin modulation of proteins involved in excitation-contraction coupling.

Muscle excitation-contraction coupling is, in large part, regulated by the activity of two proteins. These are the ryanodine receptor (RyR), which is an intracellular Ca2+ release channel and the dihydropyridine receptor (DHPR), which is a voltage gated L-type calcium channel. In skeletal muscle, the physical association between RyR1 and L-type Ca2+ channels is required for muscle excitation-co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of physiology

دوره 496 ( Pt 2)  شماره 

صفحات  -

تاریخ انتشار 1996